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THE STEADY MOTIONS OF A FLUID-FILLED 
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The motion of a thin-walled spheroid completely filled with an ideal incompressible fluid executing uniform vortex motion 
(a Kelvin top) is investigated. It is assumed that the spheroid rests on a horizontal plane from which it is acted upon by a 
normal reaction and the force of viscous sliding friction. The equations of motion of a Kelvin top on a plane with friction 
are set up, and the conditions for them to be consistent are obtained. The steady and periodic motions of a Kelvin top are 
found, and problems of the stability and branching of these motions are investigated. © 2001 Elsevier Science Ltd. All rights 
reserved. 

Fundamental results in solving a number of problems of solid-state dynamics with cavities containing 
fluid (the dynamics of fluid-filled gyroscopes, missiles and satellites) were obtained by Rumyantsev in 
[1]. Problems of the dynamics of rigid bodies with a fluid filling on a horizontal plane have been 
investigated to a lesser extent [2], although experiments by Kelvin with a thin-walled, fluid-filled 
spheroidal top are well known (see [1]). Below, the motion of a Kelvin top on a horizontal plane is 
investigated, taking into account viscous sliding friction at the point of contact of the top with the plane 
(unlike the formulation of the problem considered earlier [2], which assumed that there is neither friction 
nor slippage of the top at this point). 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider the motion of a thin-walled spheroid completely filled with an ideal incompresible fluid 
executing uniform vortex motion on horizontal plane, taking viscous sliding friction into account. It 
will be assumed that the mass of the spheroid walls is negligible compared with the mass of the fluid. 
Here, the centre of mass of the system and the principal central axes of inertia coincide with the centre 
S of the spheroid and its principal axes Sxlxzx3 respectively. 

Let al, a2 = al and a 3 be the semi-axis of the spheroid, 5 = aa/a3, ga 3 the acceleration due to gravity, 
a3vi, 0}i, g2i and ~i(i =, 1, 2, 3) the projections of the velocity of the centre of mass of the spheroid, the 
angular velocity, half the rotational vector and the unit vector of the rising vertical respectively onto 
the SX i a x i s  ( i  = 1, 2 ,  3 ) ,  na 3 the magnitude of the normal reaction related to the mass of fluid, × > 0 
the coefficient of viscous sliding friction and r = \'82(,/~ + ~/22) + ~/2 (a3r is the distance from the centre 
of the spheroid to the supporting plane). 

The equations of motion of the system, referred to the Sxlxzx3 system of coordinates, have the form 
(cf. [1-41) 

/)1 + 0")2113 -- 0}3 U2 ---- (n  -- g)Yl - ×[vl  + (•20}3Y2 - 0-)273 )r'-I ] 

v2 + 0}3vl - 0}1 v3 = (n - g)Y2 - x [ v 2 + (tO1y 3 - 82¢03Y! )r -I ] (1.1) 

03 + 0}1 V2 - 0}2 Vl = (n  - g)] '3  - × [tt3 + 82 (°}2]'1 - 0}1]'2 ) r - I  ] '  

( 8  2 -- 1) 2 482 . _~,~20}3)+_~0}2~-~3 = --(82 -- l)nY2Y3r -I + 
5(82 + I) (~' - c°20}3)+ 5(82 + I-~ (~j 

+×[(82v3Y2 - v2Y 3)r + 84((02Yi - o~ly 2)Y2 - (0}lY3 - 820}3Y1 )Y3] r-2 
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2 2 (8 -1) , .  482 

5(62 + I) 

282 
(~2  + ~210)3) - --~-- tOl~3 = ( 82 - l)nTIY3 r-I  + 

+x[-( 82u 3Tl - u l y 3 ) r -  84 (0271 -- (t)172 )71 -- (0)273 -- 82(1)372 )73 ] r-2 

2 ~  4 
3 ~ 5(82 +1) - -  ((t)l~'~ 2 -- £02~ 1 ) = X[(U 271 --U 172 )r  + ((0171 + £0272 )7:3 - -  

-8%o3(7~ + 7~)]r-: 

(1.2) 

282 
~ + ~ (Oh - f22 )f23 - (% - f~3)f~2 = 0 

282 
~2 - ~ (°.h - f2~ )f~3 + (~3 - f~3)f~ = 0 (1.3) 

2 
~3 + g~-T+ 1 ( ~ 2  - c ° 2 ~ )  = 0 

'YI +00273 -0 )372  --0,  72 +(.°3"/i -0)173 = 0 ,  'Y3 + ° ) 1 7 2 - ( D 2 7 1 : 0  (1.4) 

V171 +1/272 +0373 +[(820)372 -- 0)273) + ((DI73 -- 82¢D371) +82(0~271 -COjY2)]r -I = 0  (1.5) 

Systems (1.1) and (1.2) express theorems on the change in momentum and angular momentum of 
the spheroid respectively, system (1.3) expresses Helmholtz's theorem, system (1.4) expresses the 
condition that the unit vector of the rising vertical is constant in a fixed frame of reference and 
Eq. (1.5) expresses the condition of permanent contact of the spheroid with the plane during the motion. 
System (1.1)-(1.5) is closed with respect to the variables vi, o~i, f2i and Yi (i = 1, 2, 3) and n. 

2. ANALYSIS OF THE E Q U A T I O N S  OF M O T I O N  

First of all we note that system (1.1)-(1.5) contains no derivative of variable 0)3, which is due to the 
fact that we have neglected the mass of the spheroid and its symmetry about the Sx 3 axis. Therefore, 
the question of the consistency of system (1.1)-(1.5) requires further discussion. We will examine the 
third equations of systems (1.2) and (1.3). They are obviously consistent if, and only if, the following 
relation is satisfied 

~2(1)3(T~ +722 ) = ({0171 +03272)T3 +(I)271 --U172)E (2.1) 

Hence, the third equation of system (1.2) must be replaced by Eq. (2.1), which can be used to 
determine the variable 0~ 3, and using which this variable (in all cases when y12 + y2 ¢ 0) can be eliminated 
from the remaining equations of system (1.1)-(1.5). 

Then, multiplying the ith equation of system (1.1) by Yi (i = 1, 2, 3) and adding the relations obtained 
term by term, we have (taking Eq. (1.5) into account) 

n = g + d(vly I +u2Y 2 +v3T3) ld t  (2.2) 

On the other hand, Eq. (1.5), using relation (2.1), can be represented in the form 

v 1Yi +v 2"[2 +v 373 = ( 82 - I)(col72 - o~271 )73 / r (2.3) 

(2.4) 
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Consequently, using relations (2.3) and (2.4), from Eqs (1.1) and (1.2) it is possible to eliminate the 
variables v3 and n; here, Eq. (1.5) must be replaced by Eq. (2.3) which can be used to determine the 
variable v3, and the third equation of system (1.1) must be discarded. 

Thus, the motion of a thin-walled spheroid filled with an ideal incompressible fluid executing uniform 
vortex motion on a horizontal plane with friction can, generally speaking, be described by a system of 
differential equations comprising the first and second equations of (1.1) and the first and second 
equations of  (1.2) (all of these, taking relations (2.1), (2.3) and (2.4) into account) and Eqs (1.3) and 
(1.4) (all of these taking relations (2.1) into account). This tenth-order system is used to determine the 
ten independent variables 131, 1/2, 031, 0)2, ~"21, ~'~2, ~'23, ~/1, ~t2 and ~t3, and allows of two first integrals 
(Helmholtz's and geometric) 

n~ +E~ +82D~ = eonst, ~'l 2 + 722 +y32=1 (2.5) 

The variables (03 and v3 are determined from the finite Eqs (2.1) and (2.3) respectively, while relation 
(2.4) is used to determine the normal reaction. 

3. S T E A D Y  A N D  P E R I O D I C  M O T I O N S  

The above equations of motion of the spheroid obviously allow of steady motions of the form 

Vl =v2 =u3 =71 =Y2 =031 =032 =£-~1 = &"~2 = 0 ,  Y3 =+1 

033 ----03' ~')3 = ~ ' )  

(where co and f2 are arbitrary constants; here n = g) and of the form 

Oi = i ) 2 = U 3 = Y 3 = 0 3 3 = ~ " ~ 3 = 0 ,  y l = ~ ,  y 2 = ~ ( O t 2 + ~ 2 = l )  

(3.1) 

(3.2) 

where y, 0), f2 and ~t are constants (here n = g). 
Substituting relations (3.3) into the equations of motion of the spheroid and assuming ~2 = k0), we 

conclude that Y1 and Y2 must satisfy the system of two differential equations 

](I = -03(  82 - 1 ) ' ~ 2 ,  ~/2 = 0 (  52 - l)'Wi (3.4) 

and the four constants ~t, co, y and k = f2/0) must satisfy the two finite relations 

I.t[k(8 2 - i ) + 5 2 ( 5  2 + l ) ]  = 2 5  2 

2 k  2 + k ( 8  2 - 1)(1 + F )  + 8 2 [ ( 8  2 4- I ) F  - (5  2 - l ) ]  = 0 

where 

5g 
F = F(03, T)  = 03284J82(1~/_y2)+y2 (3.7) 

(3.5) 

(3.6) 

(3.3) u l = u 2 = v 3 = 0 ,  7 3 = 7 ,  033 =03Y, f~3 = f ~  , 

031 = 82orb, 032 = 8:ttrt2, ~ = l a 8 : f ~ ,  ~2 = ~t82f~t: 

(where e0 and f2 are arbitrary constants, and (x and 13 are arbitrary constants connected by the relation 
(x 2 + 1] 2 = 1; here, as before, n = g). These solutions correspond to permanent rotations of the spheroid 
about the vertically positioned axis of symmetry (solution (3.1)) or the vertically positioned diameter 
of the equatorial cross-section of the spheroid (solution (3.2)). 

We will find the conditions for regular precessions of the spheroid to exist. These will be sought in 
the form 
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It follows from Eqs (3.4) that Ya and 72 are periodic functions of time (with coy ¢ 0), and here (see 
(3.3)) 01~, 012, ~1 and f2 z are also periodic functions of time. The constant g is determined from 
Eq. (3.5), while the constant k is determined from Eq. (3.6). Thus, regular precessions exist if Eq. (3.6) 
is solvable, and they form two-parameter families (the free parameters 0) e R and 7 e [-1; 1]). 

When 7 = -+ 1 or y = 0, solutions (3.3) are converted into permanent rotations of the spheroid about 
the vertically positioned axis of symmetry (3.1) or about the vertically positioned diameter of the 
equatorial cross-section of the spheroid (3.2) respectively. 

The condition for regular precessions (3.3) to exist (the condition for Eq. (3.6) to be solvable) has 
the form 

(82 -- 1) 2 F 2 - 2(384 + 682 - I)F + (82 - 1)(982 - 1) t> 0 

and, generally speaking, imposes a constraint on the parameters co and 7 (see (3.7)). 
Inequality (3.8) occurs if F ~< F 1 or F ~> F2, where 

(3.8) 

( 8 -  !)(38+ 1) (8+1) (38-1)  
v , =  , t ' 2 =  

(8+  1) 2 (8 -- 1) 2 

Since F > 0 (see (3.7)), the inequality F ~ F1 can be satisfied only when 6 > 1, while inequality 
F ~> F2 is always satisfied when 3g ~< 1. 

Note that steady and periodic motions (3.1)-(3.3) are of greatest interest in the case when 
0 < f2/0) ~< 1, i.e. in the case when 0 < k ~ 1. If 0 < k ~ 1, Eq. (3.6) can be represented in the 
form 

5g 82 - 1 (1 =-gg'~+lt, -52-~k] +°(k) (3.9) 
0)284482(1 - - 7 2 ) + 7 2  

Here, regular precessions exist only when 8 > 1. If k = 1, Eq. (3.6) can be written in the form 

5g 84 - 282 - l 

0)28441~.i2(1 _ 7 2 ) + 7 2  - 84 +282 -1  (3.10) 

Here, regular precessions exits if62 e (0, (2 - 1) U ( (2  + 1, + oo). 

4. T H E  S T A B I L I T Y  OF P E R M A N E N T  
R O T A T I O N S  OF T H E  S P H E R O I D  

We will consider steady motion (3.1) and write, in its neighbourhood, linearized equations of perturbed 
motion, assuming 

p t 

O13=01+0)3, ~'23 =~"~+~'~, 73=1+"/ '3  , n=g+n" 

and retaining the previous notation for the remaining variables vi(i = 1, 2, 3), 0)j, Ca/and yj(j = 1, 2). 
Eliminating the variables v3, co~, f2~, y~ and n', using relations (2.1), (2.3), (2.4) and (2.5), after simple 
but rather lengthy calculations we obtain 

}'l - 0372 + 012 = 0 (4.1) 

"Y2 + OY~'l -c° l  = 0  

82 - I _ 282 
n~ - oz'~2 - ~-~-S t~t~2 + ~ - S  ~012 = o 

82 - -  1 ~ 282 
~2 +o~1 + g r ~ a ~  - ~ - ~ +  l a~0)~ =o  

(4.2) 
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01 --0)/32 +X/)  I + X0~2"~2 --X0) 2 - - 0  (4.3) 

v2 + 0 ) v l  + × u 2  - ×0)82y1 +×0)I = 0  

+ 5 ×  8 2 + 1  282 _ 8 2 ( 5 2 + I )  
,~,-~o~2 (g~-q3 2 0), + gr-~+l u0) 2 -s ,~  (8 2 _j)2 0)Y, + 

8 2 + 1 482 ~ 82 + 1 
+5g  ~ 72 -I- ~ - ~ _  ! S/.d~-~2 + 5X (82 _ i)---'----- ~ l) 2 = 0 

8 2 + 1  282 ~ . 8 2 ( 8 2 + 1 )  
+0)0), + s,, (gr_-?)2 0 ,2 -  g-;5+ 1 

. 8 2 + !  482 ~ _ -  8 2 + 1  
-~g ~ -S ] -  7, - ffg-~_ I , ~ × ~ v ,  = 0  

Assuming now that 

x = (71 + iY2) e i ~ ,  Y = (~1 + i ~ 2 )  ei°u 

(4.4) 

(4.5) 

u = (v I + iv 2 )e it~ , w = (0)1 + i0)2 ) ei~t 

we reduce the eighth-order system (4.1)-(4.4) in eight real variables to a fourth-order system in four 
complex variables x, y, v and w 

5 c - i w = O  

8 2 
• .8  z -  1 ~ 2i_gg_.~+l~ w y+t~-~+ l ~zy-  = 0 

b + ×v - i×O~2x + i×w = 0 

82 +1 - 2 i  x -  w+ 5×(82-1)2  gY--~f~  w - 5 ~ [ × t x ~ 5 2 + i ( 8 2 - 1 ) g ] ( 6  -1)  

82 v _ _ 4 i g ~ _ l ~ Y + 5 i ×  8 2 + 1  =0  
(8 2 -1)  2 

(4.6) 

The characteristic equation for system (4.6) has the form 

f O . )  - ~4 + (Pl + iql )~3 + (P2 + iq2 )~2 + (P3 + iq3 )~" + iq4 = 0 (4.7)  

84 +382  + 6  5(8 2 + 1)g + 2 8 2 ~  2 
Pl = (82 _ I) 2 x,  P2 = 82 - I 

5(82 + l )g  + 2 8 2 ~  2 + 582~0)  
P3 = 82 _ ] 

582(82 + 1)0) + (84 -- 782 + 6)f~ 
ql = - - ~ '  q2 = -- (82 -- 1) 2 r 

q3 = 5~g, q4 = 5~g× 

Obviously, permanent rotation (3.1) is stable, asymptotically with respect to all thevariables, except, 
generally speaking, the variable f23, if all roots of Eq. (4.7) lie in the left-hand half-plane (see relations 
(4.5), (2.1), (2.3) and (2.5)), and unstable if at least one root of this equation lies in the right-hand half- 
plane. 
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if, and only if, the 

I -ql -P2 q3 0 0 0 

0 1 -ql -P2 q3 0 0 

0 0 1 -ql -P2 q3 0 

0 0 0 Pl -q2 -P3 q4 

0 0 Pl -q2 -P3 q4 0 

0 Pl -q2 -P3 q4 0 0 

Pl -q2 -P3 q4 0 0 0 

Juri matrix 

(4.8) 

is innerly positive [5]. The conditions of inner positivity of matrix (4.8) have the form of three inequalities, 
which impose constraints on the parameters of the spheroid (i.e. on 8) and on the parameters of 
permanent rotation (3.1) (i.e. on o3 and ~2). They do not depend on the coefficient of friction 
× e (0 ;  + 

5. ANALYSIS OF S P E C I A L  CASES 

In the general case, the conditions of inner positivity of matrix (4.8) are extremely cumbersome, 
so we will therefore confine ourselves to an investigation of the special cases of weakly vortex 
(0 < f2/o3 ~ 1) and solid-state (£2 = to) motions of the fluid. 

If 0 < £2/o3 ,~ 1, all roots of Eq. (4.7) lie in the left-hand half-plane if, and only if 

(52 - 1)[g(5 a +352 +6+o(1))-540)2(52 - I)] > 0 (5.1) 

(82 - I)[5g(52 + 1 + o(1)) - 5 4 0 1 2 ( 5 2  - 1)] > 0 (5.2) 

Consequently, permanent rotations of a spheroid filled with a fluid executing weakly vortex motion about 
a vertically positioned axis of symmetry (solutions (3.1) with 0 < f2/o3 ~ 1) are stable if the spheroid 
is oblate along the axis of symmetry (8 > 1) and its angular velocity is fairly low (o32 < c0201). Here 
(see 5.1) and (5.2)) 

] 5g(82 + 1-)(1 + o(1)) 
0)0,  = (5.3) 

For the critical v, alue (5.3) of the angular velocity, there is a loss of stability of permanent rotations 
(3.1), for which 0 < ff2/co ,~ 1, due to the production of regular precessions (3.3) for which 0 < k ~ 1. 
These precessions exit only when 8 > 1 and o3~0 < o32 < c0zm, where o300 = o30J\~6. 

When 0)2 = o)2, regular precessions (3.3) (0 < k ~ 1) are converted into permanent rotations of the 
spheroid about the vertically positioned diameter of its equatorial cross-section (3.2) (0 < ~2/o3 ~ 1) 
which are stable (according to bifurcation theory [6]) at a fairly high angular velocity (o)2 > c02) if 
8 > 1, and also at any angular velocity if 6 < 1. 

When £2 = o3, all the roots of Eq. (4.7) lie in the left-hand half-plane if, and only if 

(52 - 1)[5g(52 + I ) 2 ( 5 4  +352 + 6 ) - - 0 ) 2 5 4 ( 7 5 6  - 1 5 5 4  +952 -41)1 > 0 (5.4) 

(52 - 1)[125g3(52 + 1) 5 - 25g20)254(52 + 1)(56 - 5 4 - 5 2 - 23) - 

---40g0~454(288 -356 - 1054 - 1752 + 6 ) -  560)658 (~i 4 - 252 - 1)] > 0 (5.5) 

(82 - 1)[5g(84 + 252 - 1)- 0 ) 2 5 4 ( 5 4  - -  262 - 1)] > 0 (5.6) 

Consequently, permanent rotations of a spheroid filled with a fluid executing uniform vortex motion, 
during which the fluid and shell rotate, as a whole about a vertically positioned axis of symmetry, are 
stable only if the spheroid is oblate along the axis of symmetry (8 > 1). Here, solutions (3.1), for which 

= co, are stable at any angular velocity in the case of a slightly oblate spheroid (62 ~< ~2 + 1) and at 
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a fairly low angular  velocity (032 < (O]1) in the case of  an extremely oblate spheroid (8  2 > -t- 1) (see 
(5.4)-(5.6)).  Here  

5g(8 + 28 2 - 1) 
03" = l )  

(5.7) 

With the critical value (5.7) of  the angular  velocity, there is a loss of  stability o f  pe rmanen t  rotations 
(3,1) (g2 = 03) of  an extremely oblate spheroid (82 > \ 2  + 1) due to the product ion of  regular precessions 
(3.3) (k = 1). These  precessions exits if 8 2 > x'2 + 1 only when 03]0 < (02 < o321, where  0310 = 0311N8. 

W h e n  032 = 0320, the regular precessions (3.3) (k = 1) are conver ted  into pe rmanen t  rotat ions about  
the vertically positioned diameter  of  its equatorial cross-section (3.2) (£2 = 03) which are stable (according 
to bifurcat ion theory)  when 8 2 > + 1 and 032 > 03]0. 

Remark. Regular precessions (3.3) for which k = 1 (g2 = t0) also exist (see Section 3) in the case of an extremely 
prolate spheroid (82"< \ 2 -  1) if m121 < to 2 < m20 . At rail and o)20, these precessions are converted into permanent 
rotations (3.1) or (3.2) (g2 = to) respectively. When 602 = m21 there is a change in the number of roots of Eq. (4.7) 
with a positive real part, that always exist if 8 < 1 (see relations (5.4)-(5.6)). It can be shown that 0)20 is the critical 
value of the an~ular velocity of permanent rotations (3.2) (g2 = m) of an extremely prolate (82 < x2 - 1) spheroid: 
when 0) 2 < ¢000 these rotations are stable, but when m z > 0)20 they are unstable. Permanent rotations (3.2) 
(f2 = co) of a slightly prolate. Spheroid (\72 - 1 ~< 82 < 1) are stable at any angular velocity. 
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